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Abstract

This paper develops an analytical model that incorporates an infinite number of periodically spaced discrete masses into

the equations of elasticity of a two-dimensional solid that is excited by a harmonic force in both time and space. Two

specific problems are addressed. The first is that of a plate with the masses on the bottom edge, and the second is that of a

plate with the masses embedded in the medium. The equations of elasticity are written as stress field expressions with the

appropriate boundary conditions in the spatial-frequency domain. An infinite number of indexed equations are generated

using an orthogonalization procedure. Once this is accomplished, all the indexed equations of the system are written

together in a single matrix equation. The problem is then solved using a truncated set of terms and the displacement fields

are transferred into the wavenumber–frequency domain for analysis. These results are compared to previously available

low frequency model results for solutions involving the flexural wave in the plate. A numerical example is then solved at

high frequency that includes higher-order wave motion, and this example is discussed.

Published by Elsevier Ltd.
1. Introduction

Plate theory has been researched extensively for many years. Early plate and beam theory [1] modeled
displacement in thin plates and beams. These models contain primarily flexural wave dynamics and are
inaccurate at high frequencies and wavenumbers. Rotary inertia and shear effects [2] were added to the
flexural wave model to obtain more accurate results at increased frequencies. Fully elastic models [3] were
developed to incorporate plate dynamics as the wavelengths of energy that propagate in the plate began to
approach and surpass the thickness of the plate. Analysis has also been conducted on the dispersion curves of
these systems, particularly in the area of free-wave propagation [4–9]. To a lesser extent, the mode shapes of
these systems have been studied and documented [10,11].

The complexity of plate models has increased over the years by the addition of stiffeners (ribs) or masses.
The problem of a fluid-loaded infinite thin plate with infinite sets of parallel stiffeners excited by a point load
has been analyzed in a study that modeled the stiffeners as line forces [12]. This problem was extended to
include a moment exerted by the stiffeners and forcing functions of plane wave, line, and point forces on
beams [13] and plates [14,15]. The fluid-loaded infinite plate problem was reformulated for a finite number of
equally spaced stiffeners [16] and was further studied for randomly spaced stiffeners [17]. The problem of a
ee front matter Published by Elsevier Ltd.
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fluid-loaded, aperiodic-stiffened infinite plate has also been addressed [18], as has the analysis of a finite-sized
plate containing concentrated masses [19]. In these studies [12–19], the plate model has been either a thin plate
or a thin plate with rotary inertia and shear effects. Finally, the problem was modeled using finite elements to
produce numerical solutions [20]. It is noted that the modeling technique of adding a stiffener to the plate is
similar to that of adding a discrete mass to the plate.

This paper presents an analytical model that incorporates an infinite number of periodically spaced masses
into the equations of elasticity that model motion and stress in a two-dimensional fully elastic solid. This
model is intended to be used for high frequency analysis where a relatively soft medium contains embedded
pieces that have much higher density, e.g. coated structures that for various reasons have to contain heavier
pieces. The formulation of the problem begins with elasticity theory, that models the motion in the solid as a
combination of dilatational and shear waves. From this theory, an expression for plate displacement is
obtained. The displacements are then inserted into stress relationships that are set equal to the forces acting on
the structure by the masses. The problem is then written as a dynamic system, in matrix form, where the left-
hand terms represent the zero-order mode and is equal to an infinite number of right-hand terms that
represent the masses acting on the structure plus a term that models the plane wave forcing function.
Rewriting this zero-order term by increasing and decreasing the mode index results in an expression for the
higher-order modes. The integer shift property is then applied to the right-hand side of all of the terms,
resulting in an infinite set of equations that model the wave propagation coefficients of all the modes of the
structure. This set of equations is truncated to a finite number of terms, and a solution to the displacement and
stress field is calculated. Two different cases are examined: (1) where the masses are on the edge of the plate
and (2) where the masses reside within the interior of the plate. The solution is compared to a previously
solved problem at low frequency where the wavelength of the harmonic forcing function is large compared to
the thickness of the plate. A numerical example of a high-frequency problem is included and discussed.
2. Elastic plate with masses aligned on the lower surface

The first problem analyzed is that of an elastic plate with discrete (point) masses at the bottom edge, as
shown in Fig. 1. The masses on the bottom of the plate are equally spaced a distance of L (m) in the x-
direction and each has a mass per unit length of M (kg/m). The plate has a thickness of h (m) and is loaded on
the top surface with a normal forcing function. The model is based on the following assumptions: (1) the
forcing function acting on the plate is a plane wave at a definite wavenumber and frequency, (2) the
corresponding response of the plate is at definite periodic wavenumbers and definite frequency, (3) motion is
normal and tangential to the plate in one direction (two-dimensional system), (4) the plate has infinite spatial
extent in the x-direction, (5) the masses have translational degrees of freedom in the x- and z-directions, and
(6) the particle motion is linear.
h
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Fig. 1. Elastic plate with periodic edge masses.
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The motion of the elastic plate is governed by the equation [21]

mr2gðx; y; z; tÞ þ ðlþ mÞrr � gðx; y; z; tÞ ¼ r
q2gðx; y; z; tÞ

qt2
, (1)

where r is the density (kg=m3), l and m are the Lamé constants (N=m2), t is time (s), � denotes a vector dot
product, and g(x,y,z,t) is the three-dimensional Cartesian coordinate displacement vector and is written as

gðx; y; z; tÞ ¼

uðx; y; z; tÞ

vðx; y; z; tÞ

wðx; y; z; tÞ

8><
>:

9>=
>; ¼ rfðx; y; z; tÞ þ r �

cxðx; y; z; tÞ

cyðx; y; z; tÞ

czðx; y; z; tÞ

8><
>:

9>=
>;, (2)

where f is a dilatational scalar potential, r is the gradient operator, � denotes a vector crossproduct, and ~c is
an equivoluminal vector potential. The formulation is now condensed into a two-dimensional problem; thus,
v � 0 and qð�Þ=qy � 0. Expanding Eq. (2) and breaking the displacement vector into its individual nonzero
terms yields

uðx; z; tÞ ¼
qfðx; z; tÞ

qx
�

qcyðx; z; tÞ

qz
, (3)

and

wðx; z; tÞ ¼
qfðx; z; tÞ

qz
þ

qcyðx; z; tÞ

qx
, (4)

where u(x,z,t) is the displacement field (m) in the tangential (horizontal) direction and w(x,z,t) is the
displacement field in the normal (vertical) direction (m). Eqs. (3) and (4) are next inserted into Eq. (1), which
results in two decoupled wave equations, given by

c2dr
2fðx; z; tÞ ¼

q2fðx; z; tÞ
qt2

, (5)

and

c2sr
2cyðx; z; tÞ ¼

q2cyðx; z; tÞ

qt2
, (6)

where Eq. (5) corresponds to the dilatational component and Eq. (6) corresponds to the shear component of
the displacement field. Correspondingly, the constants cd and cs are the complex dilatational and shear wave
speeds, respectively, and are determined by

cd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 2m

r

s
, (7)

and

cs ¼

ffiffiffi
m
r

r
. (8)

The displacement field is modeled as a sum of functions with respect to spatial coordinate z multiplied by an
exponential in space and time. Using this form, Eqs. (5) and (6) can be solved separately. The result is then
inserted into Eqs. (3) and (4), and noting as others have [13] that the response is spatially harmonic for
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spatially periodic systems, gives the individual displacement fields as

uðx; z; tÞ ¼
Xm¼þ1

m¼�1

UmðzÞ expðikmxÞ expð�iotÞ

¼
Xm¼þ1

m¼�1

½Amikm sinðamzÞ þ Bmikm cosðamzÞ

� Cmbm cosðbmzÞ þDmbm sinðbmzÞ� expðikmxÞ expð�iotÞ, ð9a;bÞ

and

wðx; z; tÞ ¼
Xm¼þ1

m¼�1

W mðzÞ expðikmxÞ expð�iotÞ

¼
Xm¼þ1

m¼�1

½Amam cosðamzÞ � Bmam sinðamzÞ

þ Cmikm sinðbmzÞ þDmikm cosðbmzÞ� expðikmxÞ expð�iotÞ, ð10a;bÞ

where Am, Bm, Cm, and Dm are complex wave propagation coefficients of the plate and are determined by
solving the system of equations below using four boundary conditions: i ¼

ffiffiffiffiffiffiffi
�1
p

, o is the frequency (rad/s), km

is the spatial periodic wavenumber (rad/m) and is written as

km ¼ k þ
2pm

L
, (11)

where k is the wavenumber (rad/m) with respect to the x axis, am is the modified wavenumber (rad/m)
associated with the dilatational wave and is expressed as

am ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

d � k2
m

q
, (12)

where kd is the dilatational wavenumber and is equal to o/cd, with cd being the dilatational wavespeed (m/s);
bm is the modified wavenumber (rad/m) associated with the shear wave and is expressed as

bm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

s � k2
m

q
, (13)

where ks is the shear wavenumber (rad/m) equal to o/cs and cs is the shear wavespeed (m/s). To solve for the
wave propagation coefficients, the boundary conditions at the top and bottom of the plate have to be specified.

If the plate edges contain only the normal forcing function shown in Fig. 1 (i.e. the masses are absent), the
normal stress on the top of the plate (z ¼ b) is

tzzðx; b; tÞ ¼ ðlþ 2mÞ
quzðx; b; tÞ

qz
þ l

quxðx; b; tÞ

qx
¼ �f ðx; tÞ, (14)

the tangential stress on the top of the plate is

tzxðx; b; tÞ ¼ m
quxðx; b; tÞ

qz
þ

quzðx; b; tÞ

qx

� �
¼ 0, (15)

the normal stress on the bottom of the plate (z ¼ a) is

tzzðx; a; tÞ ¼ ðlþ 2mÞ
quzðx; a; tÞ

qz
þ l

quxðx; a; tÞ

qx
¼ 0, (16)

and the tangential stress on the bottom of the plate is

tzxðx; a; tÞ ¼ m
quxðx; a; tÞ

qz
þ

quzðx; a; tÞ

qx

� �
¼ 0, (17)

where f(x, t) is the forcing function exciting the top of the plate expressed in force per unit area (N/m2).
Eqs. (1) and (14)–(17) are the governing partial differential equations and the boundary conditions for the
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displacement in an elastic plate excited by a continuous forcing function on one edge or boundary. For a
harmonic space–time loaded structure, the forcing function is given as

f ðx; tÞ ¼ F expðikxÞ expð�iotÞ. (18)

This is a traditional boundary value problem that is formulated and solved in many classical textbooks. The
problem of interest in this paper, however, is the discrete mass loading, and these dynamic forces are now
added to the boundary conditions when they reside on the bottom edge.

The normal stress due to the forces induced by the motion of the masses is equal to the summation of the
mass multiplied by the acceleration in the z-direction times the spatial Dirac delta function for each individual
mass. This expression is

tzzðx; a; tÞ ¼
Xn¼þ1

n¼�1

M
q2uzðx; a; tÞ

qt2
dðx� nLÞ. (19)

Similarly, the tangential stress due to the forces induced by the motion of the masses is equal to the
summation of the mass multiplied by the acceleration in the x-direction times the spatial Dirac delta function
for each individual mass. This equation is written as

tzxðx; a; tÞ ¼
Xn¼þ1

n¼�1

M
q2uxðx; a; tÞ

qt2
dðx� nLÞ. (20)

It is noted that each mass can also be attached to ground with a parallel spring and damper by replacing the
mass times vertical acceleration term

M
q2uzðx; a; tÞ

qt2
(21)

with

M
q2uzðx; a; tÞ

qt2
þ P

quzðx; a; tÞ

qt
þ Kuzðx; a; tÞ, (22)

where in Eq. (22), P is the viscous damping coefficient per unit length (N s/m2), and K is the spring constant
per unit length (N/m2). This system, shown in Fig. 2, corresponds to a periodically damped and stiffened
elastic plate with discrete masses.
M M M M

f (x,t)

L

P P P PK K

M M M M
L

P P P PK K

Fig. 2. Elastic plate with periodic edge masses, dampers, and springs.
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The equations for the wave propagation coefficients are obtained by inserting Eqs. (9a) and (10a) into Eqs.
(14)–(17) along with the mass boundary conditions given by Eqs. (19) and (20) and the forcing function in Eq.
(18). This yields

ðlþ 2mÞ
Xm¼þ1

m¼�1

qW mðbÞ

qz
expðikmxÞ þ ikml

Xm¼þ1

m¼�1

UmðbÞ expðikmxÞ ¼ �F expðikxÞ, (23)

m
Xm¼þ1

m¼�1

qUmðbÞ

qz
expðikmxÞ þ ikm

Xm¼þ1

m¼�1

W mðbÞ expðikmxÞ

" #
¼ 0, (24)

ðlþ 2mÞ
Xm¼þ1

m¼�1

qW mðaÞ

qz
expðikmxÞ þ ikml

Xm¼þ1

m¼�1

UmðaÞ expðikmxÞ

¼ �o2M
Xn¼þ1

n¼�1

Xm¼þ1

m¼�1

W mðaÞ expðikmxÞ

" #
dðx� nLÞ, ð25Þ

and

m
Xm¼þ1

m¼�1

qUmðaÞ

qz
expðikmxÞ þ ikm

Xm¼þ1

m¼�1

W mðaÞ expðikmxÞ

" #

¼ �o2M
Xn¼þ1

n¼�1

Xm¼þ1

m¼�1

UmðaÞ expðikmxÞ

" #
dðx� nLÞ. ð26Þ

The Dirac delta comb function that is present in Eqs. (25) and (26) obeys the relationship

Xn¼þ1
n¼�1

dðx� nLÞ ¼
1

L

Xn¼þ1
n¼�1

expði2pnx=LÞ, (27)

and using this equation, Eqs. (25) and (26) become

ðlþ 2mÞ
Xm¼þ1

m¼�1

qW mðaÞ

qz
expðikmxÞ þ ikml

Xm¼þ1

m¼�1

UmðaÞ expðikmxÞ

¼
�o2M

L

Xn¼þ1
n¼�1

Xm¼þ1

m¼�1

W mðaÞ expðikmxÞ

" #
expði2pnx=LÞ, ð28Þ

and

m
Xm¼þ1

m¼�1

qUmðaÞ

qz
expðikmxÞ þ ikm

Xm¼þ1

m¼�1

W mðaÞ expðikmxÞ

" #

¼
�o2M

L

Xn¼þ1
n¼�1

Xm¼þ1

m¼�1

UmðaÞ expðikmxÞ

" #
expði2pnx=LÞ. ð29Þ

Both the n and m summations run from minus infinity to plus infinity, therefore, the following relationship
must hold true:

Xn¼þ1
n¼�1

Xm¼þ1

m¼�1

W mðaÞ expðikmxÞ

" #
expði2pnx=LÞ ¼

Xn¼þ1
n¼�1

W nðaÞ

" # Xm¼þ1

m¼�1

expðikmxÞ. (30)
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Eq. (30) is also applicable to the UmðaÞ term, and inserting this into Eqs. (28) and (29) yields

ðlþ 2mÞ
Xm¼þ1

m¼�1

qW mðaÞ

qz
expðikmxÞ þ ikml

Xm¼þ1

m¼�1

UmðaÞ expðikmxÞ

¼
�o2M

L

Xn¼þ1
n¼�1

W nðaÞ

" # Xm¼þ1

m¼�1

expðikmxÞ, ð31Þ

and

m
Xm¼þ1

m¼�1

qUmðaÞ

qz
expðikmxÞ þ ikm

Xm¼þ1

m¼�1

W mðaÞ expðikmxÞ

" #

¼
�o2M

L

Xn¼þ1
n¼�1

UnðaÞ

" # Xm¼þ1

m¼�1

expðikmxÞ. ð32Þ

Eqs. (23), (24), (31), and (32) are now all multiplied by expð�ikpxÞ and integrated from [0,L]. This results in
an orthogonal relationship, and the series terms of the equations will decouple into individual m indexed
equations. The normal stress equation at z ¼ b becomes

ðlþ 2mÞ
qW mðbÞ

qz
þ ikmlUmðbÞ ¼

�F ; m ¼ 0;

0; ma0;

(
(33)

and the tangential stress equation at z ¼ b becomes

m
qUmðbÞ

qz
þ ikmW mðbÞ

� �
¼ 0. (34)

The normal stress equation at z ¼ a becomes

ðlþ 2mÞ
qW mðaÞ

qz
þ ikmlUmðaÞ ¼

�Mo2

L

Xn¼þ1
n¼�1

W nðaÞ, (35)

and the tangential stress equation at z ¼ a becomes

m
qUmðaÞ

qz
þ ikmW mðaÞ

� �
¼
�Mo2

L

Xn¼þ1
n¼�1

UnðaÞ. (36)

Eqs. (9b) and (10b) are inserted into Eqs. (33)–(36); however, this substitution alone does not produce a
solution to the problem, because the result is four equations and an infinite number of unknowns. This
substitution for m ¼ 0 is rewritten in matrix form as

½Að0ÞðkÞ�fxð0ÞðkÞg ¼
Xn¼þ1

n¼�1

½UðnÞðknÞ�fx
ðnÞðknÞg þ f, (37)

where ½Að0ÞðkÞ� is a four by four matrix that models the dynamics of the plate for m ¼ 0, fxð0ÞðkÞg is the four by
one vector of wave propagation coefficients for m ¼ 0, ½UðnÞðknÞ� is the four by four matrix that represents the
periodic mass loading on the structure for nth mode, fxðnÞðknÞg is the four by one vector of wave propagation
coefficients for nth mode, and f is the four by one vector that models the plane wave excitation. The entries
of the matrices and vectors in Eq. (37) are listed in Appendix A. It is noted that in the absence of masses,
all ½UðnÞðknÞ� terms are zero, and Eq. (37) regresses into the traditional elastic plate problem given in
Eqs. (14)–(17).
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To facilitate a solution to the problem, index shifting is employed. The integer shift property of an infinite
summation is applied to Eq. (37), which results in

½AðmÞðkmÞ�fx
ðmÞðkmÞg ¼

Xn¼þ1
n¼�1

½UðnþmÞðkðnþmÞÞ�fx
ðnþmÞðkðnþmÞÞg þ

f; m ¼ 0

0; ma0

(

¼
Xn¼þ1

n¼�1

½UðnÞðknÞ�fx
ðnÞðknÞg þ

f; m ¼ 0;

0; ma0;

(
ð38Þ

where the 0 term is a four by one vector whose entries are all zeros. Once the ½AðmÞ� matrix is integer-indexed
and the displacement load matrix indices have been shifted, the system equations can be rewritten using all the
n-indexed modes as

Ax ¼ Uxþ F, (39)

where A is a block-diagonal matrix and is equal to

A ¼

. .
. ..

.
c

½Að�1Þðk�1Þ� 0 0

� � � 0 ½Að0ÞðkÞ� 0 � � �

0 0 ½Að1Þðk1Þ�

c ..
. . .

.

2
666666664

3
777777775
, (40)

U is a rank deficient, block-partitioned matrix and is written as

U ¼

. .
. ..

.
c

½Uð�1Þðk�1Þ� ½U
ð0ÞðkÞ� ½Uð1Þðk1Þ�

� � � ½Uð�1Þðk�1Þ� ½U
ð0ÞðkÞ� ½Uð1Þðk1Þ� � � �

½Uð�1Þðk�1Þ� ½U
ð0ÞðkÞ� ½Uð1Þðk1Þ�

c ..
. . .

.

2
666666664

3
777777775
, (41)

F is the plane wave load vector

F ¼ ½ � � � 0T fT 0T � � � �
T, (42)

and x is the wave propagation coefficient vector that contains all the unknown indexed coefficients as

x ¼ ½ � � � fxð�1Þðk�1Þg
T fxð0ÞðkÞgT fxð1Þðk1Þg

T � � � �T. (43)

The 0 term in Eq. (40) is a four by four matrix whose entries are all zeros and the 0 term in Eq. (42) is a four
by one vector whose entries are all zeros. Eq. (39) is assembled, and the wave-propagation coefficients that
reside in the x vector can be determined using

x ¼ ½A�U��1F. (44)

When the coefficients are determined, the displacements of the system in the spatial domain can be
calculated using Eqs. (9b) and (10b).

For many analytical problems, it is desirable to transform the solution into the wavenumber–frequency
domain for analysis. For a function that is periodic on the interval [0,L], the Fourier transform into the
wavenumber domain is

ĜðkÞ ¼
1

L

Z L

0

gðx; z; tÞ expð�ikxÞdx. (45)

Insertion of Eqs. (9b) and (10b) into Eq. (45) results in the integrand for all the na0 terms equaling zero, and
this results in

ûðk; z; tÞ ¼ ½A0ik sinða0zÞ þ B0ik cosða0zÞ � C0b0 cosðb0zÞ þD0b0 sinðb0zÞ� expð�iotÞ, (46)
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and

ŵðk; z; tÞ ¼ ½A0a0 cosða0zÞ � B0a0 sinða0zÞ þ C0ik sinðb0zÞ þD0ik cosðb0zÞ� expð�iotÞ, (47)

where the hat overscript denotes the displacement function in the wavenumber domain.
The elastic plate model can be compared and, thus, validated for a relatively thin plate at low frequency

using the Timoshenko–Mindlin differential equation of motion applied to an infinite plate containing periodic
masses. This model has been previously analyzed [12,19] using a line load excitation and the Bernoulli–Euler
differential equation of motion. This model has one degree of freedom that is the displacement in the z-
direction. It is reformulated below to correspond to plane wave excitation and to include shear and rotary
inertia effects of the plate. This transfer function of normal displacement divided by excitation force is

ŵðk;oÞ
F
¼ TðkÞ

1� ðMo2=LÞTðkÞ þ ðMo2=LÞ
Pn¼þ1

n¼�1TðknÞ

1þ ðMo2=LÞ
Pn¼þ1

n¼�1TðknÞ

" #
expð�iotÞ, (48)

where

TðkÞ ¼
�1� ðD=k2mhÞk2

þ ðrh2=12k2mÞo2

Dk4
� ½ðDr=k2mÞ þ ðrh3=12Þ�o2k2

þ ðr2h3=12k2mÞo4 � ðrhÞo2
, (49)

D ¼
Eh3

12ð1� u2Þ
, (50)

and

k2 ¼
5

6� u
. (51)

In Eqs. (49) and (50), E is Young’s modulus (N/m2) and u is Poisson’s ratio (dimensionless).
Fig. 3 is a plot of the transfer function of displacement in the z-direction divided by input force versus

wavenumber at a frequency of 220Hz. The time exponential function has been suppressed. This example was
generated with the following system parameters: thickness is 0.01m, density is 1200 kg/m3, Lamé constant l is
2.25� 108N/m2, and Lamé constant m is 2.50� 107N/m2. In Fig. 3, the dashed line is Timoshenko–Mindlin
plate theory without the periodic masses (i.e., M ¼ 0); the solid line is elastic plate theory with M ¼ 0.5 kg/m
and L ¼ 0.2m and corresponds to Eq. (47); and the x symbols are Timoshenko–Mindlin plate theory with
M ¼ 0.5 kg/m and L ¼ 0.2m and corresponds to Eq. (48). The elastic plate model was calculated using seven
modes (–3pnp3) that produced a 28-by 28-element system matrix. The resonance exhibited by the
Timoshenko–Mindlin plate model is the plate flexural wave. This energy is shifted higher in wavenumber as
masses are added to the system. Additionally, the added masses facilitate wave propagation in the system at
integer multiples of the characteristic lengths of the mass separation distance. These effects, frequently called
Floquet waves, can be seen at around 13, 15 and 50 rad/m. The transfer function in the x-direction is not
shown because the Timoshenko–Mindlin equation of motion does not support a degree of freedom in this
longitudinal direction.

Fig. 4 is a plot of the elastic plate transfer function calculated using one, three, five, and seven terms
compared to Timoshenko–Mindlin plate theory for the above example. This plot illustrates the behavior of the
model as more terms are added to the truncated model. Notice that more terms, in general, correspond to
dynamics at higher wavenumbers. Numerical simulations suggest that every indexed (nontruncated) term
retained in the analysis corresponds to a resonant peak in the response. The convergence of three, five, and
seven term fully elastic models to the Timoshenko–Mindlin model was demonstrated by comparing the
average difference in normal displacement magnitude values. For this convergence test, the frequency was
changed to 50Hz and the wavenumber range of 0 to 60 rad/m was retained. These low values of frequency and
wavenumber insured that the Timoshenko–Mindlin model was evaluated in a region where the models’
assumptions are valid. The average difference between the two models was 0.0076 for the three term elastic
model, 0.0064 for the five term elastic model, and 0.0069 for the seven term elastic model. This comparison
shows analytical convergence between the two models.
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3. Elastic plate with embedded interior masses

The elastic plate model can be modified so that the periodic masses are moved from the edge into the
interior of the plate, as shown in Fig. 5. The solution to this problem is divided into two domains based on the
value of z. The upper region of the plate, location bpzpc, is denoted with a prefix superscript (2), and the
lower region of the plate, location apzpb, is denoted with a prefix superscript (1). The displacement in the x-
direction, which is found by applying Eq. (9) on two different regions, is

uðx; z; tÞ ¼

Pm¼þ1

m¼�1

½ð2ÞUmðzÞ� expðikmxÞ expð�iotÞ; bpzpc;

Pm¼þ1

m¼�1

½ð1ÞUmðzÞ� expðikmxÞ expð�iotÞ; apzpb;

8>>><
>>>:

(52)
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where

ð2ÞUmðzÞ ¼ Amikm sinðamzÞ þ Bmikm cosðamzÞ � Cmbm cosðbmzÞ þDmbm sinðbmzÞ, (53)

and

ð1ÞUmðzÞ ¼ Emikm sinðamzÞ þ Fm ikm cosðamzÞ � Gmbm cosðbmzÞ þHmbm sinðbmzÞ. (54)

Similarly, the displacement in the z-direction is

wðx; z; tÞ ¼

Pm¼þ1

m¼�1

½ð2ÞW mðzÞ� expðikmxÞ expð�iotÞ; bpzpc;

Pm¼þ1

m¼�1

½ð1ÞW mðzÞ� expðikmxÞ expð�iotÞ; apzpb;

8>>><
>>>:

(55)

where

ð2ÞW mðzÞ ¼ Amam cosðamzÞ � Bmam sinðamzÞ þ Cmikm sinðbmzÞ þDmikm cosðbmzÞ, (56)

and

ð1ÞW mðzÞ ¼ Emam cosðamzÞ � Fmam sinðamzÞ þ Gmikm sinðbmzÞ þHmikm cosðbmzÞ. (57)

There are eight boundary conditions that govern the system; two at the top, four at the interface between
region one and two, and two at the bottom. The first two equations are the normal and tangential stress,
respectively, at the top surface of the upper plate:

ð2Þtzzðx; c; tÞ ¼ �f ðx; tÞ, (58)

and

ð2Þtzxðx; c; tÞ ¼ 0. (59)

The next four boundary conditions are the interface equations on the plane where the masses reside. The
normal and tangential stress balances, respectively, between the upper and lower region of the plate, can be
calculated using Eqs. (16), (17), (19), and (20) evaluated at z ¼ b. They are

ð2Þtzzðx; b; tÞ �
ð1Þtzzðx; b; tÞ ¼

Xn¼þ1
n¼�1

M
q2uzðx; b; tÞ

qt2
dðx� nLÞ, (60)

and

ð2Þtzxðx; b; tÞ �
ð1Þtzxðx; b; tÞ ¼

Xn¼þ1
n¼�1

M
q2uxðx; b; tÞ

qt2
dðx� nLÞ. (61)

Continuity of displacement in the z- and x-directions at the interface are

ð2Þwðx; b; tÞ � ð1Þwðx; b; tÞ ¼ 0, (62)

and

ð2Þuðx; b; tÞ � ð1Þuðx; b; tÞ ¼ 0. (63)

The final two boundary conditions are the normal and tangential stress at the bottom surface of the lower
plate:

ð1Þtzzðx; a; tÞ ¼ 0, (64)

and

ð1Þtzxðx; a; tÞ ¼ 0. (65)
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Eqs. (52)–(57) are now substituted into Eqs. (58)–(65) and the orthogonalization procedure developed in
Section 2 is applied to these equations yielding

½Bð0ÞðkÞ�fyð0ÞðkÞg ¼
Xn¼þ1

n¼�1

½VðnÞðknÞ�fy
ðnÞðknÞg þ h, (66)

where ½Bð0ÞðkÞ� is an eight by eight matrix that models the dynamics of the plate for m ¼ 0, fyð0ÞðkÞg is the eight
by one vector of wave propagation coefficients for m ¼ 0, ½VðnÞðknÞ� is the eight by eight matrix that represents
the periodic mass loading on the structure for the nth mode, fyðnÞðknÞg is the eight by one vector of wave
propagation coefficients for the nth mode, and h is the eight by one vector that models the plane wave
excitation. The matrix and vector entries in Eq. (66) are listed in Appendix A. The solution method is identical
to that shown in the previous section for the plate with edge masses, although each n-indexed vector has eight
entries associated with it instead of the four entries when the masses are on the edge of the plate. Thus, the
solution becomes

y ¼ ½B� V��1H. (67)

The previous example problem of an elastic plate with discrete masses at the bottom edge was re-analyzed
and the displacement results were identical in the z-direction and nearly identical in the x-direction. This
indicates that moving the masses into the interior has no effect on the z-displacement and only a slight effect
on the x-displacement at this analysis frequency (220Hz), which is an expected result because this is a low-
frequency example where the wavelengths of the forcing function are much larger than the thickness of the
plate.
0 10 20 30 40 50 60 70 80
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Wavenumber (rad/m)

Fr
eq

ue
nc

y 
(H

z)

a0

s0

a1

0 10 20 30 40 50 60 70 80
0

200

400

600

800

1000

1200

1400

1600

1800

2000

a0

s0

a1

Fig. 6. Dispersion curve of plate with edge masses: ( ) infinite plate waves, ( ) Floquet waves of the n ¼ 0 antisymmetric wave (a0),

( ) Floquet waves of the n ¼ 0 symmetric wave (s0), and ( ) Floquet waves of the n ¼ 1 antisymmetric wave (a1).



ARTICLE IN PRESS
A.J. Hull / Journal of Sound and Vibration 310 (2008) 1–2014
4. Numerical example

A numerical example is now analyzed to show the dynamic response of elastic plates with masses on the
edge and in the interior. This example was generated with the following system parameters: thickness is 0.1m,
density is 1200 kg/m3, Lamé constant l is 4.5� 108N/m2, Lamé constant m is 5.0� 107N/m2, mass per unit
length is 3.0 kg/m, and the mass separation distance is 0.3m. Both elastic plate models were calculated using 15
modes (–7pnp7) that produced a 60-� 60-element system matrix for the edge mass problem and a 120-
� 120-element system matrix for the interior mass problem. For the interior mass problem, the masses were
located at the mid-plane of the plate. The displacement values were output at location of 0.25 h (0.025m) from
the top of the plate. This problem is constructed so that the wavelengths of the shear and dilatational waves
(0.204 and 0.677m, respectively) were on the order of the length scales of the plate thickness and mass
separation distance.

Fig. 6 is a plot of the dispersion curve for the plate with edge masses, which corresponds to free-wave
propagation of the system. The figure was calculated by finding the location in the wavenumber–frequency
plane where

det½B� V� ¼ 0. (68)

A frequency range of 0–2000Hz was chosen so that the first three waves are present in the plot. Higher
frequencies, where additional higher order modes exist, are not shown for plot clarity. The three solid lines
represent locations of waves in the wavenumber–frequency plane that are present in the infinite plate without
periodic masses, as well as the system with added masses. These waves are marked as follows: a0 which is the
zero-order antisymmetric wave, s0 which is the zero-order symmetric wave, and a1 which is the first-order
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antisymmetric wave. The short dashed line is the Floquet waves associated with the n ¼ 0 antisymmetric wave,
the long dashed line is the Floquet waves associated with the n ¼ 0 symmetric wave, and the short
dashed–long dashed line is the Floquet waves associated with the n ¼ 1 antisymmetric wave. These Floquet
waves correspond to waves that share an integer multiple of a characteristic wavenumber of the infinite plate
waves. This wavenumber is determined by

kc ¼
2p
L

(69)

and is equal to 20.9 rad/m. These Floquet waves represent energy that is propagating in the gaps between the
periodic masses.

Figs. 7 and 8 present the transfer function of tangential displacement and normal displacement, respectively,
divided by excitation force versus frequency and wavenumber for the plate with edge masses. In both figures,
the data are displayed in the decibel scale referenced to meters per Pascal. The free wave that appears in the
dispersion curve is clearly evident in both the tangential (Fig. 7) and normal (Fig. 8) displacement data. Figs. 9
and 10 present the transfer function between tangential displacement and the normal displacement,
respectively, and force versus wavenumber at 900Hz. Figs. 9 and 10 are divided into two plots for clarity: the
upper plot is the problem of an elastic plate with edge masses and the lower plot is the elastic plate with
interior masses. The dashed line in all four plots is the elastic plate solution with the absence of masses
(M ¼ 0).

Upon examination of Figs. 9 and 10, several features are noted. The resonance peaks are observable because
the transfer function is no longer a smooth, continuous function of wavenumber and frequency, as the point
masses and their characteristic length introduce additional resonances and anti-resonances into the response
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of the system. This result is expected because the model has changed from a continuous, homogeneous infinite
structure to a periodic structure that admits Floquet wave motion by the addition of discrete masses.
Additionally, this effect has also been evident in previously developed low-frequency (bending-wave) models.
The overall energy levels are approximately the same between the models with masses and the models without
masses.

5. Conclusions

The solution of an elastic plate containing periodic edge and embedded masses harmonically loaded in space
and time has been derived and found to compare favorably with previously developed thin plate models at low
frequency. A numerical example of high-frequency dynamics was presented and the details discussed. The
dispersion curve and transfer functions of tangential and normal displacements were illustrated. It was shown
that the lower- and higher-frequency waves propagate at spatial lengths that correspond to integer multiples of
the separation distance of the periodic masses. This characteristic makes the system become modally dense,
even at low frequency and low wavenumber.
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Appendix A. Matrix and vector entries

The entries of the matrixes and vectors in Eq. (37) are listed below. Without loss of generality, the bottom of
the plate is defined as z ¼ a ¼ 0. For the ½AðnÞðknÞ� matrix, the nonzero entries are

a11 ¼ ð�a2nl� 2a2nm� lk2
nÞ sinðanhÞ, (A.1)

a12 ¼ ð�a2nl� 2a2nm� lk2
nÞ cosðanhÞ, (A.2)
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a13 ¼ 2imknbn cosðbnhÞ (A.3)

a14 ¼ �2imknbn sinðbnhÞ, (A.4)

a21 ¼ 2imknan cosðanhÞ, (A.5)

a22 ¼ �2imknan sinðanhÞ, (A.6)

a23 ¼ mðb2n � k2
nÞ sinðbnhÞ, (A.7)

a24 ¼ mðb2n � k2
nÞ cosðbnhÞ, (A.8)

a32 ¼ �a2nl� 2a2nm� lk2
n, (A.9)

a33 ¼ 2imknbn, (A.10)

a41 ¼ 2imknan, (A.11)

and

a44 ¼ mðb2n � k2
nÞ. (A.12)

For the ½UðnÞðknÞ� matrix, the nonzero entries are

u31 ¼
�Mo2

L
an, (A.13)

u34 ¼
�Mo2

L
ikn, (A.14)

u42 ¼
�Mo2

L
ikn, (A.15)

and

u43 ¼
Mo2

L
bn. (A.16)

The fxð0ÞðkÞg vector entries are

fxð0ÞðkÞg ¼ fA B C D gT � fA0 B0 C0 D0 g
T. (A.17)

The x vector entries are

x ¼ f . . . A�1 B�1 C�1 D�1 A0 B0 C0 D0 A1 B1 C1 D1 . . . gT. (A.18)

The f vector entries are

f ¼ f�F 0 0 0 gT. (A.19)

The entries of the matrixes in Eq. (66) are listed below. Without loss of generality, the location of the masses
in the z-direction is defined as z ¼ b ¼ 0. For the ½BðnÞðknÞ� matrix, the nonzero entries are

b11 ¼ ð�a2nl� 2a2nm� lk2
nÞ sinðancÞ, (A.20)

b12 ¼ ð�a2nl� 2a2nm� lk2
nÞ cosðancÞ, (A.21)

b13 ¼ 2imknbn cosðbncÞ, (A.22)

b14 ¼ �2imknbn sinðbncÞ, (A.23)

b21 ¼ 2imknan cosðancÞ, (A.24)
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b22 ¼ �2imknan sinðancÞ, (A.25)

b23 ¼ mðb2n � k2
nÞ sinðbncÞ, (A.26)

b24 ¼ mðb2n � k2
nÞ cosðbncÞ, (A.27)

b32 ¼ �a2nl� 2a2nm� lk2
n, (A.28)

b33 ¼ 2imknbn, (A.29)

b36 ¼ a2nlþ 2a2nmþ lk2
n, (A.30)

b37 ¼ �2imknbn, (A.31)

b41 ¼ 2imknan, (A.32)

b44 ¼ mðb2n � k2
nÞ, (A.33)

b45 ¼ �2imknan, (A.34)

b48 ¼ �mðb
2
n � k2

nÞ, (A.35)

b51 ¼ an, (A.36)

b54 ¼ ikn, (A.37)

b55 ¼ �an, (A.38)

b58 ¼ �ikn, (A.39)

b62 ¼ ikn, (A.40)

b63 ¼ �bn (A.41)

b66 ¼ �ikn, (A.42)

b67 ¼ bn, (A.43)

b75 ¼ ð�a2nl� 2a2nm� lk2
nÞ sinðanaÞ, (A.44)

b76 ¼ ð�a2nl� 2a2nm� lk2
nÞ cosðanaÞ, (A.45)

b77 ¼ 2imknbn cosðbnaÞ, (A.46)

b78 ¼ �2imknbn sinðbnaÞ, (A.47)

b85 ¼ 2imknan cosðanaÞ, (A.48)

b86 ¼ �2imknan sinðanaÞ, (A.49)

b87 ¼ mðb2n � k2
nÞ sinðbnaÞ, (A.50)

and

b88 ¼ mðb2n � k2
nÞ cosðbnaÞ. (A.51)
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The ½VðnÞðknÞ� matrix can be written as

VðnÞðknÞ ¼
UðnÞðknÞ 0

0 0

" #
, (A.52)

where ½UðnÞðknÞ� is defined in Eqs. (A.13)–(A.16) and 0 is a four by four matrix whose entries are all zero. The
fyð0ÞðkÞg vector entries are

fyð0ÞðkÞg ¼ fA B C D E F G H gT

� fA0 B0 C0 D0 E0 F0 G0 H0 g
T. ðA:53Þ

The y vector entries are

y ¼ f � � � A�1 B�1 C�1 D�1 E�1 F�1 G�1 H�1

A0 B0 C0 D0 E0 F0 G0 H0

A1 B1 C1 D1 E1 F1 G1 H1 � � � g
T. ðA:54Þ

The h vector entries are

h ¼ f�F 0 0 0 0 0 0 0 gT. (A.55)
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